Maxwell’s Equations and Golf Ball Design
A quarter-century ago in college, I spent the better part of two semesters studying Maxwell’s equations in electromagnetics classes. Little did I know that I could use those equations to design golf balls.
A number of physical phenomena are described by Laplace's equation including steady-state heat conduction, incompressible fluid flow, elastostatics, as well as gravitational and electromagnetic fields. The theory of solutions of this equation is called Potential Theory.
One example of Potential Theory is electromagnetic field theory, which can be used to distribute objects on a spherical surface. Electromagnetic field theory has been studied extensively over the years for a variety of applications. It has been used, for example, in satellite mirror design. Electromagnetic field theory, including the obvious applications to semiconductor research and computer technology, has many applications in the physical sciences, not limited to celestial mechanics, organic chemistry, geophysics, and structural acoustics.
In many applications, the objects are treated as point charges so that principles of electromagnetic field theory can be applied to determine optimal positioning or to predict the equilibrium position of the objects.